MEAN-FIELD MORAL HAZARD FOR OPTIMAL ENERGY DEMAND RESPONSE MANAGEMENT

Emma Hubert

Romuald Élie¹ Thibaut Mastrolia² Dylan Possamaï³

Third International Congress on Actuarial Science and Quantitative Finance, Manizales, Colombia, June 19-22 2019.

¹LAMA, Université Paris–Est Marne–la–Vallée, France.

²CMAP, École Polytechnique, Palaiseau, France.

³Columbia University, IEOR department, USA.

OUTLINE

- 1. Motivation & Intuition
- A Principal MF Agents Problem
 Consumers' Problem
 Optimal contract
 Principal's Problem
- Linear energy value discrepancy Comparison with classical contracts
- 4. Conclusion

MOTIVATION & INTUITION

MOTIVATION: DEMAND RESPONSE MANAGEMENT

Electric energy cannot easily be stored: supply-demand balance at all times \Rightarrow Act on the supply side?

Issue: Low flexibility (or high cost) production and randomness of renewable energies.

Solution: Demand management, facilitated by the development of smart meters.

How can we encourage demand management and reward it optimally?

In practice. Tariff offers, price signals...

Problem. London Carbon Trial: large variance in the response.

How to improve the responsiveness?

Aïd, Possamaï, and Touzi 2018 - Optimal electricity demand response contracting with responsiveness incentives.

▶ Principal-Agent problem with moral hazard.

The Agent (he) is a risk-averse consumer, who can deviate from his baseline consumption by reducing the mean and the volatility.

$$X_{t} = X_{0} - \int_{0}^{t} \alpha_{s} \cdot \mathbf{1}_{d} ds + \int_{0}^{t} \sigma(\beta_{s}) \cdot dW_{s}, \ t \in [0, T], \tag{1}$$

where W is a d-dimensional Brownian Motion.

A control process for the Agent is a pair $\nu := (\alpha, \beta) \in \mathcal{U}$:

- α is the effort to reduce his consumption in mean;
- \cdot β is the effort to reduce the variability of his consumption.

The Principal (she) is a producer (or a retailer) subject to energy generation costs and to consumption volatility costs.

The Principal wants to incentivise the consumer to reduce the mean and the volatility of his consumption.

Moral Hazard: She observes the deviation consumption X of the Agent in continuous time, but not the effort ν he makes.

▶ She offers him a contract indexed on his deviation consumption:

$$\xi_T = \xi_0 - \int_0^T \mathcal{H}(X_s, \zeta_s) \mathrm{d}s + \int_0^T Z_s \mathrm{d}X_s + \frac{1}{2} \int_0^T \Gamma_s \mathrm{d}\langle X \rangle_s + \frac{1}{2} R_A \int_0^T Z_s^2 \mathrm{d}\langle X \rangle_s,$$
 for an optimal choice of $\zeta = (Z, \Gamma)$.

Results.

- ▶ Optimal contracting allows the system to bear more risk as the resulting volatility may increase;
- ► The control of the consumption volatility can lead to a significant increase of responsiveness.

... AND EXTEND IT TO A MEAN FIELD OF AGENTS

The producer is facing a Mean-Field (MF) of correlated consumers and optimise in mean.

Find a way for the Principal to benefit from dealing with this MF of consumers.

She knows the law of the consumption of the pool of consumers.

➤ She can design a new contract in order to penalise / reward a consumer who makes less / more effort than the rest of the pool.

Intuition.

Optimal contracts should consists of two parts:

- ► A classical part indexed on the deviation consumption of the Agent (previous contract, as in Aïd, Possamaï, and Touzi 2018);
- ► An additional part indexed on the law of the deviation consumption of others.

RELATED LITERATURE IN CONTINUOUS TIME

Drift and volatility control.

Cvitanić, Possamaï, and Touzi 2018 - Dynamic Programming Approach to Principal–Agent Problems.

Contracting with many Agents.

Élie and Possamaï 2016 - Contracting theory with competitive interacting Agents.

Élie, Mastrolia, and Possamaï 2018 - A tale of a Principal and many many Agents.

Mean-Field Games and Common Noise.

Carmona and Delarue 2018 - Probabilistic theory of mean field games with applications II.

Carmona, Delarue, and Lacker 2016 - Mean Field Games with common noise.

A PRINCIPAL - MF AGENTS PROBLEM

Classical MFG framework: All agents are identical.

► Focus on a typical small consumer who has no impact on the global consumption: the representative Agent.

His deviation from his baseline consumption is given by:

$$X_{t} = X_{0} - \int_{0}^{t} \alpha_{s} \mathbf{1}_{d} ds + \int_{0}^{t} \sigma(\beta_{s}) \cdot dW_{s} + \int_{0}^{t} \sigma^{\circ} dW_{s}^{\circ}, \ t \in [0, T].$$
 (2)

where

- · W is a d-dimensional idiosyncratic noise;
- W° is a one-dimensional common noise (common random environment as climate hazards).

A control process for the Agent is still a pair $\nu := (\alpha, \beta) \in \mathcal{U}$:

- α is the effort to reduce his consumption in mean;
- β is the effort to reduce the variability of his consumption.

AGENT'S PROBLEM

In Aïd, Possamaï, and Touzi 2018, the Principal offers a contract to an Agent indexed on his deviation consumption X.

In the MF case, the Principal faces a Mean Field of Agents and can therefore benefit from this.

She can compute the conditional law of the deviation consumption of other consumers w.r.t the common noise, denoted by $\hat{\mu}$.

 \Rightarrow New form of contracts: $\xi(X, \hat{\mu})$.

Optimisation problem of the representative consumer:

$$V_0^{A}(\xi,\hat{\mu}) := \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[U_{A} \left(\xi(X,\hat{\mu}) - \int_0^T \left(c(\nu_t^{\mathbb{P}}) - f(X_t) \right) dt \right) \right], \quad (3)$$

where c is a cost function, f denotes the preference of the Agent toward his deviation consumption, and $U_A(x) = -e^{-R_A x}$.

Applying the chain rule with common noise in Carmona and Delarue 2018 to the dynamic value function of the Agent, we obtain the following form for the contract:

$$\begin{split} \xi_T &= \xi_0 - \int_0^T \mathcal{H}(X_s, \zeta_s, \hat{\alpha}_s^*, \hat{\mu}_s) \mathrm{d}s + \int_0^T Z_s \mathrm{d}X_s + \frac{1}{2} \int_0^t \left(\Gamma_s + R_A Z_s^2 \right) \mathrm{d}\langle X \rangle_s \\ &+ \int_0^T \widehat{\mathbb{E}}^{\hat{\mu}_s} \Big[Z_s^{\mu}(\widehat{X}_s) \mathrm{d}\widehat{X}_s \Big] + \frac{1}{2} R_A \int_0^T \widehat{\mathbb{E}}^{\hat{\mu}_s} \widecheck{\mathbb{E}}^{\hat{\mu}_s} \Big[Z_s^{\mu}(\widehat{X}_s) Z_s^{\mu}(\widecheck{X}_s) \mathrm{d}\langle \widehat{X}, \widecheck{X} \rangle_s \Big] \\ &+ R_A \int_0^T Z_s \widehat{\mathbb{E}}^{\hat{\mu}_s} \Big[Z_s^{\mu}(\widehat{X}_s) \mathrm{d}\langle X, \widehat{X} \rangle_s \Big], \end{split}$$

where

- $\zeta_t = (Z_t, Z_t^{\mu}, \Gamma_t)$ is a triple of parameters chosen by the Principal;
- $\hat{\alpha}^{\star}$ is the optimal drift effort of other consumers;
- \cdot \hat{X} the deviation consumption of others, \hat{X} a copy;
- $\widehat{\mathbb{E}}^{\hat{\mu}}$ expectation under $\widehat{\mu}$ (w.r.t the common noise).

What is hidden behind this contract?

The contract is in fact indexed on:

- · X, the deviation consumption of the representative consumer;
- · W°, the common noise.

$$\begin{split} \xi_T &= \xi_0 - \int_0^T \mathcal{H}(X_s,\zeta_s) \mathrm{d}s + \int_0^T Z_s \mathrm{d}X_s + \frac{1}{2} \int_0^T \left(\Gamma_s + R_A Z_s^2\right) \mathrm{d}\langle X \rangle_s \\ &+ \int_0^T \sigma^\circ \overline{Z}_s^\mu \mathrm{d}W_s^\circ + \frac{1}{2} R_A \int_0^T \left(\overline{Z}_s^\mu\right)^2 \! \left(\sigma^\circ\right)^2 \! \mathrm{d}s + R_A \int_0^T Z_s \overline{Z}_s^\mu \left(\sigma^\circ\right)^2 \! \mathrm{d}s, \end{split}$$

where $\overline{Z}_t^{\mu} := \widehat{\mathbb{E}}^{\hat{\mu}} [Z_t^{\mu}(\widehat{X}_t)].$

- ▶ If the Principal can offer contract depending directly on the common noise, she can offer this contract, indexed by $\overline{\zeta}_t = (Z_t, \overline{Z}_t^{\mu}, \Gamma_t)$.
- ightharpoonup Contracting on $\hat{\mu}$ or W° leads in fact to the same form of contract.

OPTIMAL EFFORTS AND MEAN-FIELD EQUILIBRIUM

Given a contract of the previous form,

 \blacktriangleright optimal effort ν of the representative Agent:

$$\nu^{\star} = \left(\alpha^{\star}(Z), \beta^{\star}(\Gamma)\right) \ \Rightarrow \ \mathrm{d} X_t = \alpha^{\star}(Z) \cdot \mathbf{1}_d \mathrm{d} t + \sigma^{\star}(\Gamma) \cdot \mathrm{d} W_t + \sigma^{\circ} \mathrm{d} W_t^{\circ},$$

same as in Aïd, Possamaï, and Touzi 2018 and does not depend neither on Z^{μ} nor on $\hat{\mu}$;

- ▶ MF equilibrium: optimal efforts are the same for all consumers, $\widehat{X} \stackrel{\mathcal{L}}{\sim} X$ and $\widehat{\mu} = \mu^X$;
- ▶ from the Principal's point of view, the contract ξ is a function of X and μ^X , the conditional law of X \Rightarrow McKean Vlasov problem.

PRINCIPAL'S PROBLEM

The Principal wants to minimise, the sum of the conditional expectation of:

- \blacktriangleright the compensation ξ paid to the consumers;
- ▶ the production cost of the consumption deviation, $\int_0^T g(X_t) dt$;
- ▶ the quadratic variation of the deviation consumption, $\int_0^T d\langle X \rangle_t$;

with respect to the common noise.

Her problem is reduced to a standard control problem:

$$V^P := \sup_{\varsigma \in \mathcal{V}} \mathbb{E} \Big[U^P \big(- \mathbb{E}^{\mu_T^L}[L_T] \big) \Big], \quad L_T = \xi_T + \int_0^T g(X_s) \mathrm{d} s + \frac{h}{2} \int_0^T \mathrm{d} \langle X \rangle_s,$$

where μ^L is the conditional law of L and $U^P(c) = -e^{-R_P c}$ or $U^P(c) = c$. Two state variables: the conditional law of X (μ^X) and the conditional law of L (μ^L) \Rightarrow HJB technics.

Optimal indexation on the law

$$\mathsf{Z}^{\mu,\star} = -\mathsf{Z}^{\star} + \frac{\mathsf{R}_\mathsf{P}}{\mathsf{R}_\mathsf{A} + \mathsf{R}_\mathsf{P}} \overline{\mathsf{u}}_{\mu^\mathsf{X}}^\mathsf{P},$$

leads to the optimal contract:

$$\begin{split} \xi_t &= \xi_0 - \int_0^t \mathcal{H}(\mathsf{X}_s, \mu_s^\mathsf{X}, \zeta_s^\star, \alpha_s^\star) \mathrm{d}s \\ &+ \int_0^t \mathsf{Z}_s^\star \left(\mathrm{d}\mathsf{X}_s - \widetilde{\mathbb{E}}^{\mu_s} \left[\mathrm{d}\widetilde{\mathsf{X}}_s\right]\right) \\ &+ \frac{1}{2} \int_0^t \mathsf{\Gamma}_s^\star \mathrm{d}\langle \mathsf{X} \rangle_s \\ &+ \frac{\mathsf{R}_P}{\mathsf{R}_\mathsf{A} + \mathsf{R}_P} \int_0^t \overline{\mathsf{u}}_{\mu^\mathsf{X}}^\mathsf{P} \widetilde{\mathbb{E}}^{\mu_s^\mathsf{X}} \left[\mathrm{d}\widetilde{\mathsf{X}}_s\right] \\ &\text{Compensation for volatility control} \\ &+ \frac{1}{2} \mathsf{R}_\mathsf{A} \int_0^t \left(\left(\mathsf{Z}_s^\star\right)^2 \left(\mathrm{d}\langle \mathsf{X} \rangle_s - \left(\sigma^\circ\right)^2 \mathrm{d}s\right) + \frac{\mathsf{R}_P^2}{\left(\mathsf{R}_\mathsf{A} + \mathsf{R}_P\right)^2} \left(\sigma^\circ\right)^2 \left(\overline{\mathsf{u}}_{\mu^\mathsf{X}}^\mathsf{P}\right)^2 \mathrm{d}s \right). \end{split}$$

Let X° be the deviation consumption without common noise:

$$dX_{t}^{\circ} = -\alpha^{\star}(Z_{t}^{\star})dt + \sigma^{\star}(\Gamma_{t}^{\star}) \cdot dW_{t},$$

we can write the contract in term of X° and W°:

$$\begin{split} \xi_T &= \xi_0 - \int_0^T \mathcal{H}\big(X_s, \zeta_s^{\star}\big) \mathrm{d}s + \int_0^T Z_s^{\star} \mathrm{d}X_s^{\circ} + \frac{1}{2} \int_0^T \big(\Gamma_s^{\star} + R_A \big(Z_s^{\star}\big)^2\big) \mathrm{d}\langle X^{\circ} \rangle_s \\ &+ \frac{R_P}{R_A + R_P} \sigma^{\circ} \int_0^T \overline{u}_{\mu^X}^P \mathrm{d}W_s^{\circ} + \frac{1}{2} \frac{R_A R_P^2}{(R_A + R_P)^2} \big(\sigma^{\circ}\big)^2 \int_0^T \big(\overline{u}_{\mu^X}^P\big)^2 \mathrm{d}s. \end{split}$$

Risk-neutral case ($R_P = 0$) \Rightarrow Classical contract for drift and volatility control, indexed on X°, that is the part of the deviation consumption which is really controlled by the Agent.

COMPARISON WITH CLASSICAL CONTRACTS

If the energy value discrepancy is linear, i.e. $(f - g)(x) = \delta x$, $x \in \mathbb{R}$:

- ▶ the optimal payment rates are deterministic functions of time;
- the optimal Z* and Γ* are the same whether the Principal is riskaverse or risk-neutral;
- ▶ the payment $Z^{\mu,*}$ allows the Principal to choose the risk she wants to bear:

$$Z_{t}^{\mu,\star} = -Z_{t}^{\star} + \frac{R_{P}}{R_{A} + R_{P}} \delta(T - t).$$

We can compare the efforts and the utility of the Principal when she offers contracts indexed by $\zeta^0 = (Z, 0, \Gamma)$:

$$\xi_T = \xi_0 - \int_0^T \mathcal{H}(X_s,\zeta_s^0) \mathrm{d}s + \int_0^T Z_s \mathrm{d}X_s + \frac{1}{2} \int_0^T \left(\Gamma_s + R_A Z_s^2\right) \mathrm{d}\langle X \rangle_s,$$

GAIN IN UTILITY FOR THE PRINCIPAL

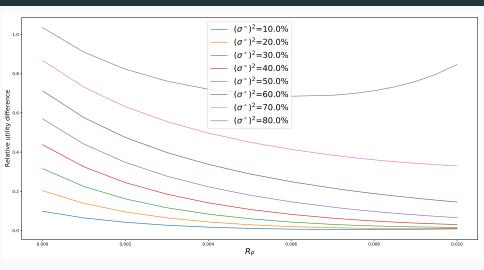


Figure: Relative utility difference. Variation with respect to $R_{\rm P}$ and σ° .

EFFORT OF THE AGENTS

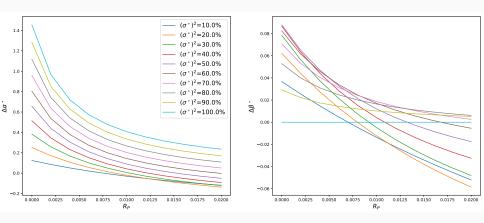


Figure: Relative gain on efforts. Variation with respect to R_P and σ° .

CONCLUSION

Principal – Mean–Field Agents model, with drift and volatility control, under moral hazard.

- ▶ New form of contracts allowing the Principal to benefit from facing a MF of Agents.
- ➤ This type of contracts allows her to choose the remaining risk she wants to bear.

At least in the linear energy value discrepancy case,

- ▶ there is a gain in utility for the Principal;
- ▶ the optimal efforts of the consumers are the same whether the Principal is risk-averse or risk-neutral;
- ▶ the consumers make more effort if the risk-aversion parameter of the Principal is small.

THANK YOU FOR YOUR ATTENTION