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motivation & intuition



motivation: demand response management

Electric energy cannot easily be stored: supply-demand balance at all
times ⇒ Act on the supply side?
Issue: Low flexibility (or high cost) production and randomness of
renewable energies.
Solution: Demand management, facilitated by the development of
smart meters.

How can we encourage demand management and reward it
optimally?

In practice. Tariff offers, price signals...
Problem. London Carbon Trial: large variance in the response.

How to improve the responsiveness?
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starting from one consumer...

Aı̈ d, Possamaı̈ , and Touzi 2018 - Optimal electricity demand response
contracting with responsiveness incentives.
▶ Principal-Agent problem with moral hazard.

The Agent (he) is a risk-averse consumer, who can deviate from his
baseline consumption by reducing the mean and the volatility.

Xt = x0 −
∫ t

0
αs · 1dds+

∫ t

0
σ(βs) · dWs, t ∈ [0, T], (1)

where W is a d-dimensional Brownian Motion.
A control process for the Agent is a pair ν := (α, β) ∈ U :

• α is the effort to reduce his consumption in mean;
• β is the effort to reduce the variability of his consumption.

The Principal (she) is a producer (or a retailer) subject to energy gen-
eration costs and to consumption volatility costs.
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starting from one consumer...

The Principal wants to incentivise the consumer to reduce the mean
and the volatility of his consumption.
Moral Hazard: She observes the deviation consumption X of the Agent
in continuous time, but not the effort ν he makes.
▶ She offers him a contract indexed on his deviation consumption:

ξT = ξ0 −
∫ T

0
H(Xs, ζs)ds+

∫ T

0
ZsdXs +

1
2

∫ T

0
Γsd⟨X⟩s +

1
2RA

∫ T

0
Z2sd⟨X⟩s,

for an optimal choice of ζ = (Z, Γ).

Results.

▶ Optimal contracting allows the system to bear more risk as the
resulting volatility may increase;

▶ The control of the consumption volatility can lead to a significant
increase of responsiveness.
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... and extend it to a mean field of agents

The producer is facing a Mean-Field (MF) of correlated consumers and
optimise in mean.

Find a way for the Principal to benefit from dealing with this MF of
consumers.

She knows the law of the consumption of the pool of consumers.
▶ She can design a new contract in order to penalise / reward a con-
sumer who makes less / more effort than the rest of the pool.

Intuition.
Optimal contracts should consists of two parts:

▶ A classical part indexed on the deviation consumption of the
Agent (previous contract, as in Aı̈ d, Possamaı̈ , and Touzi 2018);

▶ An additional part indexed on the law of the deviation consump-
tion of others.
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related literature in continuous time

Drift and volatility control.

Cvitanić, Possamaı̈ , and Touzi 2018 - Dynamic Programming Approach
to Principal–Agent Problems.

Contracting with many Agents.

Élie and Possamaı̈ 2016 - Contracting theory with competitive
interacting Agents.
Élie, Mastrolia, and Possamaı̈ 2018 - A tale of a Principal and many
many Agents.

Mean–Field Games and Common Noise.
Carmona and Delarue 2018 - Probabilistic theory of mean field
games with applications II.
Carmona, Delarue, and Lacker 2016 - Mean Field Games with
common noise.
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a principal - mf agents problem



the representative agent

Classical MFG framework: All agents are identical.
▶ Focus on a typical small consumer who has no impact on the global
consumption: the representative Agent.
His deviation from his baseline consumption is given by:

Xt = x0 −
∫ t

0
αs1dds+

∫ t

0
σ(βs) · dWs+

∫ t

0
σ◦dW◦

s , t ∈ [0, T]. (2)

where

• W is a d-dimensional idiosyncratic noise;
• W◦ is a one-dimensional common noise (common random envi-
ronment as climate hazards).

A control process for the Agent is still a pair ν := (α, β) ∈ U :

• α is the effort to reduce his consumption in mean;
• β is the effort to reduce the variability of his consumption.
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agent’s problem

In Aı̈ d, Possamaı̈ , and Touzi 2018, the Principal offers a contract to an
Agent indexed on his deviation consumption X.

In the MF case, the Principal faces a Mean Field of Agents and can
therefore benefit from this.

She can compute the conditional law of the deviation consumption of
other consumers w.r.t the common noise, denoted by µ̂.

⇒ New form of contracts: ξ(X, µ̂).

Optimisation problem of the representative consumer:

VA0
(
ξ, µ̂

)
:= sup

P∈P
EP

[
UA

(
ξ(X, µ̂)−

∫ T

0

(
c(νPt )− f

(
Xt
))

dt
)]

, (3)

where c is a cost function, f denotes the preference of the Agent to-
ward his deviation consumption, and UA(x) = −e−RAx.
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new form of contracts

Applying the chain rule with common noise in Carmona and Delarue
2018 to the dynamic value function of the Agent, we obtain the fol-
lowing form for the contract:

ξT = ξ0 −
∫ T

0
H(Xs, ζs, α̂⋆

s , µ̂s)ds +
∫ T

0
ZsdXs +

1
2

∫ t

0

(
Γs + RAZ2s

)
d⟨X⟩s

+

∫ T

0
Êµ̂s

[
Zµs (X̂s)dX̂s

]
+

1
2RA

∫ T

0
Êµ̂sE

̂
µ̂s
[
Zµs (X̂s)Zµs (X

̂
s)d⟨X̂, X

̂
⟩s
]

+ RA

∫ T

0
ZsÊµ̂s

[
Zµs (X̂s)d⟨X, X̂⟩s

]
,

where

• ζt =
(
Zt, Zµt , Γt

)
is a triple of parameters chosen by the Principal;

• α̂⋆ is the optimal drift effort of other consumers;
• X̂ the deviation consumption of others, X

̂

a copy;
• Êµ̂ expectation under µ̂ (w.r.t the common noise).
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equivalence with contract on the common noise

What is hidden behind this contract ?

The contract is in fact indexed on:

• X, the deviation consumption of the representative consumer;
• W◦, the common noise.

ξT = ξ0 −
∫ T

0
H(Xs, ζs)ds+

∫ T

0
ZsdXs +

1
2

∫ T

0

(
Γs + RAZ2s

)
d⟨X⟩s

+

∫ T

0
σ◦Zµs dW◦

s +
1
2RA

∫ T

0

(
Zµs

)2(
σ◦)2ds+ RA

∫ T

0
ZsZ

µ

s
(
σ◦)2ds,

where Zµt := Êµ̂
[
Zµt (X̂t)

]
.

▶ If the Principal can offer contract depending directly on the com-
mon noise, she can offer this contract, indexed by ζ t =

(
Zt, Z

µ

t , Γt
)
.

▶ Contracting on µ̂ or W◦ leads in fact to the same form of contract.
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optimal efforts and mean–field equilibrium

Given a contract of the previous form,

▶ optimal effort ν of the representative Agent:

ν⋆ = (α⋆(Z), β⋆(Γ)) ⇒ dXt = α⋆(Z) · 1ddt+ σ⋆(Γ) · dWt + σ◦dW◦
t ,

same as in Aı̈ d, Possamaı̈ , and Touzi 2018 and does not depend
neither on Zµ nor on µ̂;

▶ MF equilibrium: optimal efforts are the same for all consumers,
X̂ L∼ X and µ̂ = µX;

▶ from the Principal’s point of view, the contract ξ is a function of
X and µX, the conditional law of X ⇒ McKean Vlasov problem.
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principal’s problem

The Principal wants to minimise, the sum of the conditional expecta-
tion of:

▶ the compensation ξ paid to the consumers;
▶ the production cost of the consumption deviation,

∫ T
0 g(Xt)dt;

▶ the quadratic variation of the deviation consumption,
∫ T
0 d⟨X⟩t;

with respect to the common noise.

Her problem is reduced to a standard control problem:

VP := sup
ζ∈V

E
[
UP(− EµL

T [LT]
)]
, LT = ξT +

∫ T

0
g(Xs)ds+

h
2

∫ T

0
d⟨X⟩s,

where µL is the conditional law of L and UP(c) = −e−RPc or UP(c) = c.
Two state variables: the conditional law of X (µX) and the conditional
law of L (µL) ⇒ HJB technics.
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optimal contract

Optimal indexation on the law

Zµ,⋆ = −Z⋆ + RP
RA + RP

uP
µX ,

leads to the optimal contract:

ξt = ξ0 −
∫ t

0
H(Xs, µX

s , ζ
⋆
s , α

⋆
s )ds︸ ︷︷ ︸

Hamiltonian

+

∫ t

0
Z⋆s
(
dXs − Ẽµs

[
dX̃s

])
︸ ︷︷ ︸

Penalisation w.r.t the others

+
1
2

∫ t

0
Γ⋆sd⟨X⟩s︸ ︷︷ ︸

Compensation for volatility control

+
RP

RA + RP

∫ t

0
uP
µX ẼµX

s
[
dX̃s

]
︸ ︷︷ ︸

Payment on others

+
1
2RA

∫ t

0

((
Z⋆s
)2(d⟨X⟩s −

(
σ◦)2ds)+

R2
P

(RA + RP)2
(
σ◦)2(uP

µX
)2ds).︸ ︷︷ ︸

Compensation for risk due to the risk aversion of the consumer (RA)
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interpretation of the optimal contract

Let X◦ be the deviation consumption without common noise:

dX◦t = −α⋆(Z⋆t )dt+ σ⋆(Γ⋆t ) · dWt,

we can write the contract in term of X◦ and W◦:

ξT = ξ0 −
∫ T

0
H
(
Xs, ζ⋆s

)
ds+

∫ T

0
Z⋆sdX◦s +

1
2

∫ T

0

(
Γ⋆s + RA

(
Z⋆s
)2)d⟨X◦⟩s

+
RP

RA + RP
σ◦

∫ T

0
uP
µXdW◦

s +
1
2

RAR2
P

(RA + RP)2
(
σ◦)2 ∫ T

0

(
uP
µX
)2ds.

Risk–neutral case (RP = 0) ⇒ Classical contract for drift and volatility
control, indexed on X◦, that is the part of the deviation consumption
which is really controlled by the Agent.
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linear energy value discrepancy



comparison with classical contracts

If the energy value discrepancy is linear, i.e. (f− g)(x) = δx, x ∈ R:

▶ the optimal payment rates are deterministic functions of time;
▶ the optimal Z⋆ and Γ⋆ are the same whether the Principal is risk-

averse or risk-neutral;
▶ the payment Zµ,⋆ allows the Principal to choose the risk she wants

to bear:

Zµ,⋆t = −Z⋆t +
RP

RA + RP
δ(T− t).

We can compare the efforts and the utility of the Principal when she
offers contracts indexed by ζ0 =

(
Z, 0, Γ

)
:

ξT = ξ0 −
∫ T

0
H(Xs, ζ0s )ds+

∫ T

0
ZsdXs +

1
2

∫ T

0

(
Γs + RAZ2s

)
d⟨X⟩s,
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gain in utility for the principal
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Figure: Relative utility difference.
Variation with respect to RP and σ◦.
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effort of the agents
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Figure: Relative gain on efforts.
Variation with respect to RP and σ◦.
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conclusion



conclusion

Principal – Mean–Field Agents model, with drift and volatility control,
under moral hazard.

▶ New form of contracts allowing the Principal to benefit from fac-
ing a MF of Agents.

▶ This type of contracts allows her to choose the remaining risk she
wants to bear.

At least in the linear energy value discrepancy case,

▶ there is a gain in utility for the Principal;
▶ the optimal efforts of the consumers are the same whether the

Principal is risk-averse or risk-neutral;
▶ the consumers make more effort if the risk–aversion parameter

of the Principal is small.
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Thank you for your attention
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